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Dihedral angle measurement in microgravity
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Liquid phase sintered materials are characterized by a connected microstructure composed
of contacting grains in a solidified matrix phase. Characterizations on the sintered
microstructure are typically performed by two-dimensional cross sections. A new dihedral
angle model based totally on the geometry of the spherical solid grains without any further
assumptions is presented in this paper to determine the dihedral angles measured in
two-dimensional sections vs. the dihedral angles in three dimensions. The result shows
that the average dihedral angle measured on sections is 14/15 the dihedral angle in three
dimensions. The expected frequencies of the simulation are favorably compared with the
experimental results obtained from microgravity liquid phase sintered Fe-Cu alloys with
four different solid volume fractions (50, 60, 70, 80 vol% Fe balanced with Cu) and six
different sintering times (10, 20, 30, 40, 60 and 330 minutes) when a 3-D dihedral angle with
a standard deviation of 10◦, in our case, 40◦ ± 10◦, was employed in the model. The
goodness of fit of the theoretical 2-D results with the experimental data was determined by
chi-squared test. The fit of the data is good since all the computed values of χ2 are smaller
than the critical value. C© 2003 Kluwer Academic Publishers

1. Introduction
The dihedral angle is important to the microstructure
of polycrystalline grains and to grain-grain contacts in
the liquid phase. It determines the equilibrium size of
the contact between grains and affects both the liquid
and grain shapes. From Young’s Equation

cos

(
φ

2

)
= γSS

2γSL
(1)

where φ is the dihedral angle, γSS is the solid-solid grain
boundary energy, and γSL is the solid-liquid interface
energy, a calculation of the relative energies is only
possible if an accurate measurement of the dihedral
angle is made.

A classic problem in analyzing microstructures is to
convert from a typical two-dimensional metallographic
cross section to a true representation of the underly-
ing three-dimensional microstructure [1]. Many efforts
have been focused on that conversion [2–4]. The dihe-
dral angle conversion is one of the problems because
the dihedral angle φ is formed where a solid-solid grain
boundary intersects the liquid [5], it involves two planes
in three dimensions, and only a two-dimensional cut
through the dihedral angle is observed.

A typical two-dimensional metallographic section is
shown in Fig. 1. The microstructure is composed of Fe
grains and a penetrating matrix of Fe-Cu alloy. During
sintering, the Fe grains were solid and the matrix alloy
was liquid. On two-dimensional micrographs, because

grain contacts are at random orientations to any cross
section cut through the experimental specimen, a distri-
bution of observed dihedral angles results, represented
in the proportions of their inherent probabilities [6].
This distribution must then be manipulated to obtain a
single “true or effective” dihedral angle.

Dihedral angles measured by the statistical method
were first employed by Harker and Parker [6]. They de-
veloped a method for obtaining a single 3-D dihedral
angle from the distribution of 2-D angles that result
from random sectioning of an angle. They developed
the following equation to relate the calculated 2-D dis-
tribution and a specific 3-D dihedral angle

tan γ = 2 sin φ cos θ

sin2 θ (cos 2ϕ − cos φ) + 2 cos φ
(2)

where φ is the true dihedral angle, γ is the observed
angle, and θ and ϕ are polar coordinates. The cumu-
lative frequencies of the theoretically expected dihe-
dral angle distributions were compared with the exper-
imentally measured angles assuming that a specimen’s
grain structure consists of a network of grain edges
that are randomly oriented and uniformly distributed.
However, the peaks observed at the modal angle of ex-
perimental data were blunter and broader than expected
from the model. No good fits in the literature could be
found. The major reason for the discrepancy in the dis-
tributions calculated from Equation 2 is the presence
of a range of dihedral angles in all specimens [7, 8].
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Figure 1 Micrograph of a liquid phase sintered Fe-Cu alloy (60 vol% Fe/Cu) sintered at 1150◦C for 60 minutes, different dihedral angles were shown.

A distribution in the dihedral angle can result from
varying grain boundary energy with misorientation,
anisotropic surface energies and various misorientation
angles, or even measuring error [8].

Riegger and Van Vlack [9] showed that the median
dihedral as measured on two-demensional sections pro-
vides a satisfactory value for dihedral angle determina-
tion with a typical error of 5◦. Factors, such as grain
size distribution and spherical grain shape, have never
been considered in the previous model. Further consid-
eration of these factors is a goal of this paper.

2. Mathematical model
In the space with Cartesian coordinates, a vector V can
be expressed as

V = Ai + Bj + Ck (3)

where A, B and C are the ordinates of the vector V at
X , Y and Z coordinates, as shown in Fig. 2. This vector

Figure 2 Cartesian coordinates and spherical coordinates.

can also be described using Spherical coordinates (r , θ ,
ϕ), which are related to the Cartesian coordinates by

A = r sin θ cos ϕ

B = r sin θ sin ϕ

C = r cos θ (4)

Here, r is the length of the vector V. If this vector
V = 〈A, B, C〉 is a normal line of the plane containing
the point (x1, y1, z1), the plane perpendicular to it can
be represented, in a standard form, by the equation

A(x − x1) + B(y − y1) + C(z − z1) = 0 (5)

That is,

Ax + By + Cz − Ax1 − By1 − Cz1 = 0 (6)

In this way, the sectioning plane, P1, which passes
through the point (A, B, C) and is normal to the vector
V (Fig. 3), can be expressed as

Ax + By + Cz − A2 − B2 − C2 = 0 (7)

or

Ax + By + Cz − r2 = 0 (8)

Substituting Equation 4 into Equation 8, the plane P1
can be expressed by the following equation:

(sin θ cos ϕ)x +(sin θ sin ϕ)y +(cos θ )z−r = 0 (9)

The cross section formed by the plane, P1, intersect-
ing the spherical solid grain as shown in Fig. 3 is a
circular area C1 and is determined by combining the
plane Equation 9 and the following sphere Equation 10

x2 + y2 + z2 = R2
1 (10)

where R1 is the radius of the spherical grain.
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Figure 3 An ideal model of a solid grain with sectioning planes.

The other plane, P2, in Fig. 3 is a plane normal to
Y coordinate (parallel to the plane X Z ). Its equation is
given by

y = δ1 (11)

where δ1 is the distance from the origin to the plane P2.

	 = 2
√(

R2
1 − δ2

1

)
(1 + tan2 θ cos2 ϕ) − (r sec θ − δ1 tan θ sin ϕ)2 (15)

The intersection of the circular area C1 and the plane
P2 forms a straight line M1M2. Thus, the ends of Line
M1M2 can be determined by solving Equations 9, 10
and 11.

Substituting Equation 11 into Equation 9 of Plane 1,
the variable z can be written as

z = −(tan θ cos ϕ)x + r sec θ − δ1 tan θ sin ϕ (12)

Substituting Equations 11 and 12 into Equation 10 of a
sphere, one gets

(1 + tan2 θ cos2 ϕ)x2 − 2(tan θ cos ϕ)

× (r sec θ − δ1 tan θ sin ϕ)x

+ (r sec θ − δ1 tan θ sin ϕ)2 − R2
1 + δ2

1 = 0 (13)

The solution of Equation 13 is

x1,2 = 2(tan θ cos ϕ)(r sec θ − δ1 tan θ sin ϕ) ± 	

2(1 + tan2 θ cos2 ϕ)
(14)

where

From Equation 14, we have

x1 − x2 = 	

1 + tan2 θ cos2 ϕ
(16)

Considering Equation 12, it can be shown that

z1−z2 = −(tan θ cos ϕ)(x1−x2) = − (tan θ cos ϕ)	

1 + tan2 θ cos2 ϕ

(17)

After two points M1 (x1, δ1, z1) and M2 (x2, δ1, z2)
are known, the length of the line M1M2 is expressed as

L = |M1 − M2| (18)

379



Figure 4 The model of two solid grains, showing the major calculation parameters.

Substituting Equations 16 and 17 into Equation 18, the
length, L , of the line can be calculated by

L =
√

(x1 − x2)2 + (z1 − z2)2 = 	√
(1 + tan2 θ cos2 ϕ)

(19)

Fig. 4 sketches a schematic geometry of these two
solid grains in contact to form a three dimensional di-
hedral angle φ. Set Plane P2 to be the contact plane of
two solid grains with radii R1 and R2. No matter where
the sectioning plane, P1, is, the following relationships
always hold,

δ1 = R1 cos φ1 (20)

R1 sin φ1 = R2 sin φ2 (21)

Thus, 	 can be further simplified to be

	 = 2
√

R2
1 sin2 φ1(1 + tan2 θ cos2 ϕ) − (r sec θ − R1 tan θ sin ϕ cos φ1)2 (22)

φ2 = sin−1
(

R1

R2
sin φ1

)
(23)

cos φ2 =
√

1 −
(

R1

R2
sin φ1

)2

(24)

The dihedral angle of the grains in the three-
dimensional space is

φ = φ1 + φ2 = φ1 + sin−1
(

R1

R2
sin φ1

)
(25)

that is,

sin(φ − φ1) = R1

R2
sin φ1 (26)

Equation 26 can be rewritten as

sin φ cos φ1 − cos φ sin φ1 − R1

R2
sin φ1 = 0 (27)

Thus,

tan φ1 = R2 sin φ

R2 cos φ + R1
(28)

Also,

sin φ1 = R2 sin φ√
R2

1 + R2
2 + 2R1 R2 cos φ

(29)

cos φ1 = R2 cos φ + R1√
R2

1 + R2
2 + 2R1 R2 cos φ

(30)

The distance between the two grain centers is deter-
mined by

δ = R1 cos φ1 + R2 cos φ2

=
√

R2
1 + R2

2 − 2R1 R2 cos(π − φ)

=
√

R2
1 + R2

2 + 2R1 R2 cos φ (31)

Substituting Equations 22, 29, 30 and 31 into
Equation 19, we have
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L = 2

√
R2

1 R2
2 sin2 φ(1 + tan2 θ cos2 ϕ) − [rδ sec θ − R1 tan θ sin ϕ(R2 cos φ + R1)]2

δ2(1 + tan2 θ cos2 ϕ)
(32)

where δ is defined in Equation 31.
From the definition of L , the length of the intersection

line of sectioning plane, P1, and the intergrain contact
plane, P2, L is a function of the position of the random
sectioning plane, P1 (r, θ, ϕ), the spherical grain sizes
(R1, R2), and the three dimensional dihedral angle φ

between the two grains. That is the length of the inter-
section of planes P1 and P2 varies with different sec-
tioning plane position for the same grains and dihedral
angle. Furthermore, the intersection of the sectioning
plane and the two grains in contact is two circular areas
in contact, as shown in Fig. 5, for a meaningful two-
dimensional dihedral angle to be observed. Here, C1
and C2 are the intersection area of the plane P1 with
two grains, respectively.

The radius of the circular area C1 is given by

r1 =
√

R2
1 − r2 (33)

The distance from the point O2 (0, δ, 0) to the sectioning
plane, P1, can be calculated by

r ′ = |(sin θ sin ϕ)0 + (sin θ cos ϕ)δ + (cos θ )0 − r |

= ∣∣√R2
1 + R2

2 + 2R1 R2 cos φ sin θ sin ϕ − r
∣∣ (34)

Figure 5 A plane sectioned the two three-dimensional solid grains in contact.

Therefore, the radius of circular area C2 is

r2 =
√

R2
2 − r ′2

=
√

R2
2 − (√

R2
1 + R2

2 + 2R1 R2 cos φ sin θ sin ϕ − r
)2

(35)

Fig. 6 is a two-dimensional projection on the section-
ing plane of the two three-dimensional solid grains in
contact. Similar to Equations 21 and 23, we have

r1 sin γ1 = r2 sin γ2 (36)

and

γ2 = sin−1
(

r1

r2
sin γ1

)
(37)

Therefore, the observed two-dimensional dihedral an-
gle, which is the sum of angles γ1 and γ2 in Fig. 6, is
given by

γ = γ1 + γ2 = γ1 + sin−1
(

r1

r2
sin γ1

)
(38)
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Figure 6 A two-dimensional image of the two three-dimensional solid grains in contact.

where

γ1 = sin−1
(

L

2r1

)

= sin−1

√√√√ R2
1 R2

2 sin2 φ(1 + tan2 θ cos2 ϕ) − [
rδ sec θ − R1 tan θ sin ϕ(R2 cos φ + R1)

]2(
R2

1 − r2
)
δ2(1 + tan2 θ cos2 ϕ)

(39)

and

γ2 = sin−1
(

L

2r2

)
= sin−1

(
r1

r2
sin γ1

)

= sin−1

√√√√ R2
1 R2

2 sin2 φ(1 + tan2 θ cos2 ϕ) − [
rδ sec θ − R1 tan θ sin ϕ(R2 cos φ + R1)

]2[
R2

2 − (δ sin θ sin ϕ − r )
]2

δ2(1 + tan2 θ cos2 ϕ)
(40)

r1, r2, and γ are the characterizations which we can
observe and measure directly on a two dimensional sec-
tioning plane.

3. Simulation technique
First, we consider equal sized solid grains. Consider two
equal sized solid grains contact in space, as illustrated
in Fig. 4. The radii of the solid grains expressed by
Equations 33 and 35 and the length of the contact neck
given in Equation 32 on the two-dimensional sectioning
plane can be simplified as the following,

r1 = R
√

1 − r2
0 (41)

γ = sin−1
(

L

2r1

)
+ sin−1

(
L

2r2

)

= sin−1

√√√√√√√√
1

1 − r2
0


sin2 φ

2
−

(
r0 sec θ − tan θ sin ϕ cos

φ

2

)2

1 + tan2 θ cos2 ϕ




+ sin−1

√√√√√√√√
1

1 −
(

2 cos
φ

2
sin θ sin ϕ − r0

)2


sin2 φ

2
−

(
r0 sec θ − tan θ sin ϕ cos

φ

2

)2

1 + tan2 θ cos2 ϕ


 (45)

r2 = R

√
1 −

(
2 cos

φ

2
sin θ sin ϕ − r0

)2

(42)

L = 2R

√√√√√
sin2 φ

2
−

(
r0 sec θ − tan θ sin ϕ cos

φ

2

)2

1 + tan2 θ cos2 ϕ
(43)

where R is the radius of the solid grain, and r0 is a
random normalized vector length given by

r0 = r

R
(44)

The two-dimensional dihedral angle is expressed as
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The three variables of Spherical coordinates, the nor-
malized length of the vector, r0, and the two space an-
gles, θ and ϕ are the calculation parameters for a given
φ, the three-dimensional dihedral angle.

Then, in order to investigate the influence of the grain
size distribution to the observed dihedral angles on
the two-dimensional sectioning planes, different grain
sizes of R1 and R2 are considered through a parameter
λ defined as

λ = R2

R1
(46)

From the definition of Equation 46, Equations 32, 33,
and 35 was rewritten as

r1 = R1

√
1 − r2

01 (47)

r2 = R1

√
λ2 − (δλ sin θ sin ϕ − r01)2 (48)

L = 2R1

√
λ2 sin2 φ(1 + tan2 θ cos2 ϕ) − [r01δλ sec θ − tan θ sin ϕ(λ cos φ + 1)]2

(1 + tan2 θ cos2 ϕ)δ2
λ

(49)

where R1 is the radius of the left solid grain, R2 is the
radius of the right solid grain in Fig. 4, and r01 is a
random normalized vector length given by

r01 = r

R1
(50)

δλ is a dimensionless distance between the two grain
centers

δλ = δ

R1
=

√
1 + λ2 + 2λ cos φ (51)

The observed dihedral angle is expressed as

γ = sin−1
(

L

2r1

)
+ sin−1

(
L

2r2

)

= sin−1

√
λ2 sin2 φ(1 + tan2 θ cos2 ϕ) − [r01δλ sec θ − tan θ sin ϕ(λ cos φ + 1)]2(

1 − r2
01

)
(1 + tan2 θ cos2 ϕ)δ2

λ

+ sin−1

√
λ2 sin2 φ(1 + tan2 θ cos2 ϕ) − [r01δλ sec θ − tan θ sin ϕ(λ cos φ + 1)]2[

λ2 − (δλ sin θ sin ϕ − r01)2
]
(1 + tan2 θ cos2 ϕ)δ2

λ

(52)

The three variables of Spherical coordinates, the nor-
malized length of the vector, r01, and the two space
angles, θ and ϕ are the calculation parameters for a
given φ and λ.

In both the mathematical model and the simulation,
the left grain in Fig. 4 is centered at the origin (0, 0, 0)
with a radius R (or R1). The center of the right-hand
grain is located at a distance δ from the origin and is
of the same radius (or R2). Both grains are spheres.
A two-dimensional cross section is generated when a
plane sections either of the grains physically. In gen-
eral, two important factors must be considered in the
simulation: the randomness of a sectioning plane and
the effectiveness of this sectioning plane.

The random vector is generated by creating three
random variables: the length of the vector, r , and two

space angles, θ and ϕ. Usually, the three variables are
assumed to distribute uniformly within a given range.
Such a vector can be considered as one variable in
space. The sectioning plane is defined normal to the
vector, passing through the end point of the vector. A
mathematically possible sectioning plane is generated
through the combination of these three variables.

Not all planes given by the various mathematical
combinations of these three variables exist physically
in the real world. For example, some possible section-
ing planes have no intersections with either of the two
grains. It is necessary to check the effectiveness of the
sectioning planes before we count this sectioning. This
is done as follows.

First, for a given combination of these three vari-
ables, compute the quantities of r2

1 , r2
2 and L2 by Equa-

tions 41–43 (or Equations 47–49). Second, this com-
bination is considered to form a physically possible
sectioning plane only if the following conditions are
satisfied simultaneously,

r2
2 ≥ 0 (53)

L2 ≥ 0 (54)

L2

4r2
1

≤ 1 (55)

L2

4r2
2

≤ 1 (56)

A large number of sections is needed to cover all
the possible sectioning planes that may occur in an
experiment. For example, for a 3-D dihedral angle of
20◦, 40,000 sectioning planes are needed to get more
than 5,000 effective sectioning planes. A large number
of effective sectioning planes guarantees the random-
ness of the section and the correctness of the statistical
result.

The simulation procedure is summarized as follows:

1. Randomly create a vector V (r, θ, ϕ),
2. Generate the sectioning plane P1 which is normal

to the vector V based on Equation 9,
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3. For a given λ and three-dimensional dihedral an-
gle, calculate the theoretically predicted dihedral angle
and grain sizes using Equations 41–43 or 47–49,

4. Check the effectiveness of the sectioning plane
using Equations 53–56,

5. Repeat the above steps as many as needed,
6. Compute the mean values of the theoretically pre-

dicted dihedral angle and the grain sizes or the distri-
butions of the dihedral angle and the grain sizes.

The first set of equations, Equations 41–43, devel-
oped here can be used to verify the derivation of the
second set, Equations 47–49, as we’ll show in the next
section.

4. Results and discussions
4.1. Relation between the 2-D grain radius

and the equal sized 3-D grain radius
The relationship between the arithmetic mean of the
two-dimensional grain radius and the equal sized three-
dimensional grain radius can be easily obtained from
Equation 41 by integrating√

1 − r2
0 from r0 = 0 to r0 = 1,

that is

r̄1 = π

4
R (57)

The measured grain size depends linearly on the space
grain size. The coefficient π/4 [3] is obtained at a con-
stant probability of cutting a sphere in a distance r from
the center r = 0 to the surface r = R. This is true if the
grain has no relation to neighboring grains and the grain
size is the only concern of the section. Simulation us-
ing a uniformly distributed random r0, between 0 and
1 gives an answer of 0.785 when the number of cutting
planes is large enough. A number of 100,000 was used
in this simulation. The frequencies of the sections at
various normalized intersect radii is shown in Fig. 7. It
can be seen in this figure that more than 40% of the sec-
tions intersect the center of the grains. This means that

Figure 7 The occurrence of sectioning at different normalized grain
radius.

any sectioning plane cutting through a specimen with
equal sized spherical grains will intersect over 40% of
the grain centers.

The relationships between the mean of the two-
dimensional grain sizes and the equal sized grains in
three-dimensional space are also linear when the sec-
tioning plane intersects two grains in contact, as shown
in Fig. 5. The average correlation coefficient is 0.8811
for both r1 and r2 with dihedral angles ranging from 15◦
to 75◦ typical for most liquid phase sintered materials
[1]. This is about 12 percent larger than π/4 calcu-
lated from the arithmetic mean of the intersect radii
for a single grain. The equalization of the correlation
coefficients for r1 and r2 also supports our model and
simulation procedure. A larger coefficient is expected,
since the effective sections counted this time must also
have an observable dihedral angle in the simulation. The
geometrical limitation for two grains in contact with
an observable dihedral angle results in a non-constant
probability of sectioning a sphere at a distance r from
the center between r = 0 and r = R. The probability of
cutting a grain near r = R, that is the corresponding
grain sizes, r1, r2, near 0, is very sparse and rare from
this geometrical consideration as we can see in Fig. 7.
Sixty five percent of the sections intersect the center of
the equal sized spherical grains at a 3-D dihedral angle
of 40◦. The frequencies at various normalized intersect
radii are different at various 3-D dihedral angles. At a
3-D dihedral angle of 80◦, the frequency of sectioning
through the grain centers decreases to 59%.

The correlation coefficients for r1 and r2 decrease as
the 3-D dihedral angle is increased from 15◦ to 75◦.
This is because the intergrain contact area is increasing
at a larger 3-D dihedral angle, and the larger contact
area permits sections closer to r = R (r1, r2 near 0) still
reveal an observable dihedral angle. Thus, the mean
ratio of r/R becomes smaller with an increasing dihe-
dral angle. The correlation coefficient mentioned here is
not a conversion coefficient since on a polished section
plane, there always exist grains that are not in contact
with any other grains. Fig. 8 shows the correlation co-
efficient as a function of the 3-D dihedral angle. The
3-D dihedral angle affect the grain size on an effective
sectioning plane of the grains that reveals an observable
dihedral angle.

Figure 8 The mean simulated 2-D grain radii to the 3-D grain radius as
a function of the 3-D dihedral angle.
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Figure 9 The effect of radius ratio of the two solid grains on the occur-
rence of observations of the 2-D dihedral angles at a 3-D dihedral angle
of 60◦.

4.2. Effect of grain size
The effect of grain size on the expected dihedral angle is
shown in Fig. 9. The same mean and distribution of the
expected dihedral angles were obtained under three dif-
ferent ratios of grain radii, 0.2, 1.0 and 1.8. These grain
size ratios were randomly chosen between the typical
normalized grain radii 0 to 2 in LSEM grain size distri-
butions that fit our microgravity liquid phase sintered
Fe-Cu samples [10]. The unequal grain sizes have no
effect on the expected dihedral angles, at least when
the grains are spherical. Thus, biased sampling will not
be a problem if a sizable fraction of the particles seen
in a polished plane cannot be measured with the best
magnification available as discussed in [7]. Because no
matter how different the grain sizes, the grain size dis-
tributions and the magnifications are, the typical ratio
of the grain radii should be between 0 and 2. That is,
in a microstructure composed of spherical solid grains
dispersing in a liquid matrix, the 2-D dihedral angle is
a function of the 3-D dihedral angle only.

As we can see in Fig. 9, depending on the position of
the sectioning plane, the expected dihedral angle dis-
tributes between 0◦ and 180◦ with its peak on the 3-D
dihedral angle (60◦ in Fig. 9) used to evaluate the ex-
pected dihedral angles. Both Equations 45 and 52 were
used to compute the expected dihedral angles under the
same conditions to verify the correctness of the deriva-
tion. The result of Equation 52 when λ = 1 is chosen
to compute the expected dihedral angles is the same as
the result obtained from Equation 45. This confirms the
correctness of the derivation.

4.3. Relation between the 2-D dihedral
angle and the 3-D dihedral angle

As the grain size distribution has no effect on the
expected dihedral angles, Equation 45 was employed
to simulate the relationship between the dihedral an-
gle of solid grains in three-dimensional space and the
corresponding dihedral angles on the two-dimensional
plane. When only the sectioning planes generated in
the right half of the grain that is centered in the ori-
gin are considered, the difference between the 3-D and
2-D dihedral angles is very small. The maximum differ-
ence is 1◦, which is less than the 5◦ measurement error.

Figure 10 The theoretically expected mean of the 2-D dihedral angles
as a function of the 3-D dihedral angles when the cutting planes are
generated in the right half of the left grain.

For instance, for a 3-D dihedral angle of 60◦, the mean
value of the expected two-dimensional dihedral angles
is 59.5◦, which is very close to the actual dihedral angle
in space. Fig. 10 shows the result of the simulation ob-
taining from the planes generated in the right half of the
left grain. A conclusion that γ = φ is reasonable con-
sidering the random measurement error. This result was
concluded by DeHoff [11] and is the result of Harker
and Parker’s equation because only half of the sphere
was taken into account in their equation [6]. This can
be clearly seen from Equation 2. Since cos 2ϕ gives the
same mean values with 2ϕ = 2πr0 and 2ϕ = 4r0, r0 is
a random number between 0 and 1, Harker and Parker
considered the sections and the resulted dihedral angles
symmetric for the other half sphere in their model. This
symmetry could hold if suitable coordinates or the right
range of ϕ is chosen, for example, if ϕ is −π/2 to π/2.

In the model established specifically for dispersed
solid grains, it is obvious that the left and right halves
of the grain are not symmetric to generate a meaning-
ful sectioning plane and an effective dihedral angle.
The correlation coefficients, r1/R and r2/R, for the
two grains are not the same either, if only the right half
of the left grain is used for the simulation. The coeffi-
cient for the right grain is about 3% larger than that of
the left one. The number of effective sectioning planes
generated in the left half as described in Section 2 is
much less than generated in the right half. However, the
probability of a plane generated in the left half exists.
Thus, the whole grain is taken into account to get an
actual mean and distribution of the expected dihedral
angles.

Smaller mean dihedral angles were obtained when
the planes generated in the whole grain are used in the
simulation. The result is shown in Fig. 11. From this
figure, every 15◦ increase in the 3-D dihedral angle
results in a loss of 1◦ in the mean value of the 2-D
expected dihedral angles, that is, γ = 14

15φ. For a 60◦
3-D dihedral angle, the expected 2-D dihedral angle is
about 56◦. The experimentally determined 2-D results
for Fe-Cu samples processed in microgravity have a
measured dihedral angle around 37.5◦ (Fig. 12), the
actual 3-D dihedral angle should be 40◦ based on the
simulation.
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Figure 11 The theoretically expected mean of the 2-D dihedral angles
as a function of the 3-D dihedral angles when the cutting planes are
generated in the whole grain.

Figure 12 The experimentally measured 2-D dihedral angles.

4.4. Dihedral angle distribution
Fig. 13 shows the frequency of observations versus the
2-D dihedral angles at various 3-D dihedral angles of
20◦, 40◦, 60◦, and 80◦, respectively. As the 3-D dihedral
angle increases, the distribution expands and the peak
of the distribution decreases.

From the statistical point of view, the experimen-
tally measured dihedral angle of a large number of 2-D
measurements forms a distribution. The experimental
dihedral angle distributions for more than 600 measure-
ments in each specimen were established under various
compositions and sintering times. There is no signifi-
cant difference between the experimental dihedral an-
gle distributions of the four compositions and the six
sintering times. Agglomeration under microgravity is
believed to promote an equilibrium particle configu-
ration early on in microgravity liquid phase sintering
[10]. However, difference between distributions of 50–
70 vol% Fe/Cu and 80 vol% Fe/Cu exists. The peak
occurrence of the experimental dihedral angles is 30◦
for 50–70 vol% Fe/Cu, while the peak for 80 vol%
Fe/Cu is 40◦. Two typical experimental distributions
are shown in Figs 14 and 15 respectively. The mean
values of the dihedral angles for 80 vol% Fe/Cu are al-

Figure 13 Theoretical frequency of observations of the 2-D dihedral
angles at different 3-D dihedral angles.

Figure 14 Expected 2-D dihedral angle distributions at a 3-D dihedral
angle of 40◦ with standard deviations 0◦ and 10◦ compared with the
experimental 2-D dihedral angle distributions with a composition of
50 vol% Fe/Cu for the sintering time of 30 min.

Figure 15 Expected 2-D dihedral angle distributions at a 3-D dihedral
angle of 40◦ with standard deviations 0◦ and 10◦ compared with the
experimental 2-D dihedral angle distributions with a composition of
80 vol% Fe/Cu for the sintering time of 30 min.

most the same as the other compositions as we can see
in Fig. 12, although the higher solid volume fraction
moves the peak of the dihedral angle distribution to a
bigger angle.
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T ABL E I Calculatedχ2 values for the current model and experimental
distributions

Sintering Sintering
Compositions times χ2 Compositions times χ2

50 vol% 20 min. 9.28 70 vol% 20 min. 5.96
Fe/Cu 30 min. 8.53 Fe/Cu 30 min. 9.30

60 min. 18.67 60 min. 11.67
330 min. 24.57 330 min. 6.52

60 vol% 20 min. 12.00 80 vol% 10 min. 7.56
Fe/Cu 30 min. 13.79 Fe/Cu 30 min. 5.54

60 min. 10.69 60 min. 8.26
330 min. 17.70 40 min. 8.15

The goodness of fit of the theoretically expected 2-D
dihedral angle distribution based on the current model
to the distribution of experimentally measured dihedral
angles for various solid volume fractions of micrograv-
ity liquid phase sintered Fe-Cu samples is presented in
Figs 14 and 15. The theoretical distribution for a sin-
gle unique 3-D dihedral angle, that is 40◦ in our case,
doesn’t yield a satisfactory match to the experimentally
observed distributions as reported by other researchers
[7, 8]. Good agreement between the theoretical distri-
bution for a normal distribution of 3-D dihedral angles
around 40◦ with a standard deviation of 10◦ and the ex-
perimental data was obviously shown in Figs 14 and 15.
The goodness of fit of the experimental and expected
distributions was tested by the chi-squared test. The
equation for the chi-squared test is [12]

χ2 =
k∑

i=1

(yi − ei )2

ei
(58)

where k is the number of intervals the results were
grouped into, yi is the measured number in the interval,
ei is the expected value of yi predicted by the model.
The degrees of freedom are v = k − 1 = 17 − 1 = 16.
The critical value is χ2

0.005,16 = 26.296. The model is
rejected if this critical value is exceeded. Comparison
of the calculated values of χ2 (Table I) to this critical
value concludes that the measured experimental dihe-
dral angle distributions in all the sixteen microgravity
processed Fe-Cu specimens may be modeled by the
theoretical prediction at a 3-D dihedral angle of 40◦
with a standard deviation of 10◦. The variance in 3-D
dihedral angle may arise from the lack of geometric
equilibrium, or from varying grain boundary energy
with misorientation, or from orientation factors [7], or
even from measuring error [8]. As we can see in Fig. 1,
the solid grains are not perfectly spherical. The shape
factor of the solid grains could cause this variance, too.

The current distribution calculated with a 3-D di-
hedral angle of 120◦ was compared with the distribu-
tion data provided in [6] in Fig. 16. Both Harker’s data
(Skewness = −1.17) and our data (Skewness = −1.56)
skewed to the left, but Harker’s data have a lower
peak, while our data has a higher peak. The chi-
squared test between these two sets of data using
Harker’s data as expected frequencies showed that the
computed χ2 = 19.04 is well below the critical value

Figure 16 Comparison of expected distribution of Harker and Parker to
the data of the current model at a 3-D dihedral angle of 120◦.

χ2
0.05,18 = 28.9. This means that no significant differ-

ence exists between them although their peak occur-
rence, skewness is not the same. The data collected
in our microgravity processed Fe-Cu samples have a
higher distribution of smaller angles as shown in Figs 14
and 15, that feature of distribution fits a model with
higher left skewness. Our model and simulation were
justified.

5. Conclusion
A new dihedral angle model was developed to statisti-
cally simulate the 2-D dihedral angle distribution and
to obtain the corresponding 3-D dihedral angle. Sim-
ulations based on this model show that the grain size
distribution has no effect on the 2-D expected dihedral
angles. The relation between the 2-D expected dihedral
angle and the 3-D dihedral angle is γ = 14

15φ. The nor-
mal distributed 3-D dihedral angle of 40◦ with a stan-
dard deviation of 10◦ fits the experimentally measured
data, while the distribution expected from a unique
3-D dihedral angle of 40◦ has a much higher peak and
narrower expansion than the experimentally measured
distribution for all 16 Fe-Cu microgravity processed
specimens.
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